Genetic Insights into Asthma Pathogenesis and Therapeutic Approaches

Authors

Keywords:

asthma genetics, GWAS, bronchial hyperresponsiveness, treatment, inflammatory response

Abstract

Asthma, defined by airway inflammation and immune dysregulation, is significantly influenced by genetic factors. The authors underscore the importance of genome-wide association studies (GWAS) in identifying numerous asthma-related genes. These genes predominantly pertain to immune function and lung physiology, elucidating the disease's multifactorial character. The article examines specific gene polymorphisms, particularly variations in cytokines such as IL-4, IL-13, and IL-17A, pivotal to asthma's development. Variants in the IL-4 gene correlate with heightened asthma risk and affect disease phenotype, whereas IL-13 polymorphisms relate to susceptibility and severity. The contribution of the IL-17A gene in fostering airway inflammation and responsiveness is likewise analyzed. Furthermore, the study investigates immune regulation genes, including CD-14, a cell surface receptor, and its debated implications in asthma. This underscores the intricate and ongoing discussions surrounding the genetic aspects of asthma. The article ultimately stresses the significance of genetic research in asthma. It proposes that elucidating the genetic foundations of asthma may facilitate personalized treatment approaches, potentially transforming asthma management and enhancing patient outcomes. This research highlights the prospect of substantial progress in asthma therapy, shifting towards a more individualized strategy based on genetic profiles.

References

Alghobashy, A. A., Elsharawy, S. A., Alkholy, U. M., Abdalmonem, N., Abdou, M. A., Basset, M. A., & Pasha, H. F. (2018). B2 adrenergic receptor gene polymorphism effect on childhood asthma severity and response to treatment. Pediatric Research, 83(3), 597–605.

Antczak, A., Domańska-Senderowska, D., Górski, P., Pastuszak-Lewandoska, D., Nielepkowicz-Goździńska, A., Szewczyk, K., Kurmanowska, Z., Kiszałkiewicz, J., & Brzeziańska-Lasota, E. (2016). Analysis of changes in expression of IL-4/IL-13/STAT6 pathway and correlation with the selected clinical parameters in patients with atopic asthma. International Journal of Immunopathology and Pharmacology, 29(2), 195–204. https://doi.org/10.1177/0394632015623794

Asher, M. ea, Keil, U., Anderson, H. R., Beasley, R., Crane, J., Martinez, F., Mitchell, E. A., Pearce, N., Sibbald, B., & Stewart, A. W. (1995). International Study of Asthma and Allergies in Childhood (ISAAC): Rationale and methods. European Respiratory Journal, 8(3), 483–491.

Bijanzadeh, M., Mahesh, P. A., & Ramachandra, N. B. (2011). An understanding of the genetic basis of asthma. The Indian Journal of Medical Research, 134(2), 149.

Birben, E., Sahiner, U. M., Karaaslan, C., Yavuz, T. S., Cosgun, E., Kalayci, O., & Sackesen, C. (2014). The genetic variants of thymic stromal lymphopoietin protein in children with asthma and allergic rhinitis. International Archives of Allergy and Immunology, 163(3), 185–192.

Duan, T., Du, Y., Xing, C., Wang, H. Y., & Wang, R.-F. (2022). Toll-Like Receptor Signaling and Its Role in Cell-Mediated Immunity. Frontiers in Immunology, 13, 812774. https://doi.org/10.3389/fimmu.2022.812774

Elkington, P. T. G., & Friedland, J. S. (2006). Matrix metalloproteinases in destructive pulmonary pathology. Thorax, 61(3), 259–266. https://doi.org/10.1136/thx.2005.051979

Gunn, T. M., Azarani, A., Kim, P. H., Hyman, R. W., Davis, R. W., & Barsh, G. S. (2002). [No title found]. BMC Genetics, 3(1), 2. https://doi.org/10.1186/1471-2156-3-2

Hanson, B., McGue, M., Roitman-Johnson, B., Segal, N. L., Bouchard Jr, T. J., & Blumenthal, M. N. (1991). Atopic disease and immunoglobulin E in twins reared apart and together. American Journal of Human Genetics, 48(5), 873.

Hong, S.-J., Kim, H.-B., Kang, M.-J., Lee, S.-Y., Kim, J.-H., Kim, B.-S., Jang, S.-O., Shin, H.-D., & Park, C.-S. (2007). TNF-α (- 308 G/A) and CD14 (- 159T/C) polymorphisms in the bronchial responsiveness of Korean children with asthma. Journal of Allergy and Clinical Immunology, 119(2), 398–404.

Hough, K. P., Curtiss, M. L., Blain, T. J., Liu, R.-M., Trevor, J., Deshane, J. S., & Thannickal, V. J. (2020). Airway Remodeling in Asthma. Frontiers in Medicine, 7, 191. https://doi.org/10.3389/fmed.2020.00191

Hynes, G. M., & Hinks, T. S. C. (2020). The role of interleukin-17 in asthma: A protective response? ERJ Open Research, 6(2), 00364–02019. https://doi.org/10.1183/23120541.00364-2019

Ibragimov, K. I. (2022). The risk of cardiovascular disease in rheumatoid arthritis patients treated with disease-modifying antirheumatic drugs: A clinic based case control study. Journal of Global Health Reports, 4(2). http://joghr.com/index.php/JGHR/article/view/32

Ibragimov, K., Sultonov, I., & Ravshanova, M. (2024). The Effectiveness of the Combination Therapy with biologic DMARDS in Rheumatoid Arthritis. Frontiers of Global Science, 2(1), 17–24.

Ibrat, A., Kamola, I., Komila, A., & Nodira, T. (2023). FEATURES OF THE SYNDROMES OF OSTEOPOROSIS AND SARCOPENIA IN RHEUMATOID ARTHRITIS WITH MUSCLE WEAKNESS. Spectrum Journal of Innovation, Reforms and Development, 13, 95–103.

Imraish, A., Abu-Thiab, T., & Zihlif, M. (2021). IL-13 and FOXO3 genes polymorphisms regulate IgE levels in asthmatic patients. Biomedical Reports, 14(6), 55. https://doi.org/10.3892/br.2021.1431

Jindal, S. K. (2015). Genetic basis of asthma. The Indian Journal of Medical Research, 142(6), 640–643. https://doi.org/10.4103/0971-5916.174537

Kawai, T., & Akira, S. (2010). The role of pattern-recognition receptors in innate immunity: Update on Toll-like receptors. Nature Immunology, 11(5), 373–384. https://doi.org/10.1038/ni.1863

Kazani, S., Wechsler, M. E., & Israel, E. (2010). The role of pharmacogenomics in improving the management of asthma. The Journal of Allergy and Clinical Immunology, 125(2), 295–302; quiz 303–304. https://doi.org/10.1016/j.jaci.2009.12.014

Kerkhof, M., Postma, D. S., Brunekreef, B., Reijmerink, N. E., Wijga, A. H., De Jongste, J. C., Gehring, U., & Koppelman, G. H. (2010). Toll-like receptor 2 and 4 genes influence susceptibility to adverse effects of traffic-related air pollution on childhood asthma. Thorax, 65(8), 690–697.

Khasan, I., Ibrat, A., Islomovich, S. I., Sukhrobovna, R. M., Islamova, K., & Shuxrat, Z. (n.d.). The Association Between Cardiovascular Disease and Conventional DMARDs in Patients with Rheumatoid Arthritis. International Journal of Health Sciences, 6(S8), 5053–5059.

Kim, K. W., & Ober, C. (2019). Lessons Learned From GWAS of Asthma. Allergy, Asthma & Immunology Research, 11(2), 170–187. https://doi.org/10.4168/aair.2019.11.2.170

Liang, S.-Q., Chen, X.-L., Deng, J.-M., Wei, X., Gong, C., Chen, Z.-R., & Wang, Z.-B. (2014). Beta-2 adrenergic receptor (ADRB2) gene polymorphisms and the risk of asthma: A meta-analysis of case-control studies. PloS One, 9(8), e104488. https://doi.org/10.1371/journal.pone.0104488

Martinez, F. D. (2007). CD14, endotoxin, and asthma risk: Actions and interactions. Proceedings of the American Thoracic Society, 4(3), 221–225. https://doi.org/10.1513/pats.200702-035AW

Moniuszko, M., Bodzenta-Lukaszyk, A., Kowal, K., Lenczewska, D., & Dabrowska, M. (2009). Enhanced frequencies of CD14++CD16+, but not CD14+CD16+, peripheral blood monocytes in severe asthmatic patients. Clinical Immunology, 130(3), 338–346. https://doi.org/10.1016/j.clim.2008.09.011

Nawijn, M. C., Motta, A. C., Gras, R., Shirinbak, S., Maazi, H., & van Oosterhout, A. J. M. (2013). TLR-2 activation induces regulatory T cells and long-term suppression of asthma manifestations in mice. PloS One, 8(2), e55307. https://doi.org/10.1371/journal.pone.0055307

Ober, C. (2016). Asthma Genetics in the Post-GWAS Era. Annals of the American Thoracic Society, 13 Suppl 1(Suppl 1), S85-90. https://doi.org/10.1513/AnnalsATS.201507-459MG

Omraninava, M., Eslami, M. M., Aslani, S., Razi, B., Imani, D., & Feyzinia, S. (2022). Interleukin 13 gene polymorphism and susceptibility to asthma: A meta-regression and meta-analysis. European Annals of Allergy and Clinical Immunology, 54(4), 150–167. https://doi.org/10.23822/EurAnnACI.1764-1489.180

Pahwa, P., Karunanayake, C. P., Rennie, D. C., Chen, Y., Schwartz, D. A., & Dosman, J. A. (2009). Association of the TLR4 Asp299Gly polymorphism with lung function in relation to body mass index. BMC Pulmonary Medicine, 9, 46. https://doi.org/10.1186/1471-2466-9-46

Palmer, L. J., & Cookson, W. O. (2000). Genomic approaches to understanding asthma. Genome Research, 10(9), 1280–1287.

Ravshanova, M., Ibragimov, K., Uralov, R., Xasanov, F., Islamova, K., Abdushukurova, K., Sultonov, I., & Axmedov, I. (2024). Clinical and Immunological Characteristics of Patients with Rheumatoid Arthritis on Synthetic DMARDS Therapy. Frontiers of Global Science, 2(1), 41–47.

Sahin, F., Yıldız, P., Kuskucu, A., Kuskucu, M. A., Karaca, N., & Midilli, K. (2014). The effect of CD14 and TLR4 gene polymorphisms on asthma phenotypes in adult Turkish asthma patients: A genetic study. BMC Pulmonary Medicine, 14, 20. https://doi.org/10.1186/1471-2466-14-20

Sahu, M., & Prasuna, J. G. (2016). Twin Studies: A Unique Epidemiological Tool. Indian Journal of Community Medicine: Official Publication of Indian Association of Preventive & Social Medicine, 41(3), 177–182. https://doi.org/10.4103/0970-0218.183593

Shaban, S. A., Brakhas, S. A., & Ad’hiah, A. H. (2021). Association of interleukin-17A genetic polymorphisms with risk of asthma: A case-control study in Iraqi patients. Meta Gene, 29, 100935.

Silverman, E. K., Kwiatkowski, D. J., Sylvia, J. S., Lazarus, R., Drazen, J. M., Lange, C., Laird, N. M., & Weiss, S. T. (2003). Family-based association analysis of beta2-adrenergic receptor polymorphisms in the childhood asthma management program. The Journal of Allergy and Clinical Immunology, 112(5), 870–876. https://doi.org/10.1016/s0091-6749(03)02023-2

Slager, R. E., Hawkins, G. A., Li, X., Postma, D. S., Meyers, D. A., & Bleecker, E. R. (2012). Genetics of asthma susceptibility and severity. Clinics in Chest Medicine, 33(3), 431–443. https://doi.org/10.1016/j.ccm.2012.05.005

Sobirov, A., & Ibragimov, K. (2025). Assessment of Platelet Function in the Hemostasis System in Women with Premature Ovarian Insufficiency. Frontiers of Global Science, 3(1), 8–11.

Tashinova, L., Khamraeva, N., Mambetova, L., Khasanov, F., & Ibragimov, K. (2023). Risk factors for the development of systemic lupus erythematosus (sle) in asians: A research case-control. BIO Web of Conferences, 65, 05017. https://www.bio-conferences.org/articles/bioconf/abs/2023/10/bioconf_ebwff2023_05017/bioconf_ebwff2023_05017.html

Thomsen, S. F. (2014). Exploring the origins of asthma: Lessons from twin studies. European Clinical Respiratory Journal, 1(Suppl 1). https://doi.org/10.3402/ecrj.v1.25535

Tiotiu, A. I., Novakova, P., Nedeva, D., Chong-Neto, H. J., Novakova, S., Steiropoulos, P., & Kowal, K. (2020). Impact of Air Pollution on Asthma Outcomes. International Journal of Environmental Research and Public Health, 17(17), 6212. https://doi.org/10.3390/ijerph17176212

Tripathi, P., Awasthi, S., & Gao, P. (2014). ADAM metallopeptidase domain 33 (ADAM33): A promising target for asthma. Mediators of Inflammation, 2014, 572025. https://doi.org/10.1155/2014/572025

Wang, Y.-H., & Wills-Karp, M. (2011). The potential role of interleukin-17 in severe asthma. Current Allergy and Asthma Reports, 11(5), 388–394. https://doi.org/10.1007/s11882-011-0210-y

Xu, S., & Cao, X. (2010). Interleukin-17 and its expanding biological functions. Cellular & Molecular Immunology, 7(3), 164–174. https://doi.org/10.1038/cmi.2010.21

Yan, F., Hao, Y., Gong, X., Sun, H., Ding, J., & Wang, J. (2021). Silencing a disintegrin and metalloproteinase‑33 attenuates the proliferation of vascular smooth muscle cells via PI3K/AKT pathway: Implications in the pathogenesis of airway vascular remodeling. Molecular Medicine Reports, 24(1), 502. https://doi.org/10.3892/mmr.2021.12141

Yoshinaka, T., Nishii, K., Yamada, K., Sawada, H., Nishiwaki, E., Smith, K., Yoshino, K., Ishiguro, H., & Higashiyama, S. (2002). Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene, 282(1–2), 227–236.

Zhang, R., Deng, R., Li, H., & Chen, H. (2016). No Association Between −159C/T Polymorphism of the CD14 Gene and Asthma Risk: A Meta-Analysis of 36 Case-Control Studies. Inflammation, 39(1), 457–466. https://doi.org/10.1007/s10753-015-0269-z

Zhang, S., Li, Y., & Liu, Y. (2015). Interleukin-4 -589C/T Polymorphism is Associated with Increased Pediatric Asthma Risk: A Meta-Analysis. Inflammation, 38(3), 1207–1212. https://doi.org/10.1007/s10753-014-0086-9

Zhao, L., & Bracken, M. B. (2011). Association of CD14-260 (-159) C> Tand asthma: A systematic review and meta-analysis. BMC Medical Genetics, 12(1), 1–10.

Zhou, T., Huang, X., Ma, J., Zhou, Y., Liu, Y., Xiao, L., Yuan, J., Xie, J., & Chen, W. (2019). Association of plasma soluble CD14 level with asthma severity in adults: A case control study in China. Respiratory Research, 20(1), 19. https://doi.org/10.1186/s12931-019-0987-0

Zuo, L., Lucas, K., Fortuna, C. A., Chuang, C.-C., & Best, T. M. (2015). Molecular Regulation of Toll-like Receptors in Asthma and COPD. Frontiers in Physiology, 6, 312. https://doi.org/10.3389/fphys.2015.00312

Downloads

Published

2025-01-06

How to Cite

Kholmirzayev, B. (2025). Genetic Insights into Asthma Pathogenesis and Therapeutic Approaches. Frontiers of Global Science, 3(1), 28–33. Retrieved from https://www.scissmed.com/index.php/pub/article/view/26