Cutaneous Microbial Imbalance in Atopic Dermatitis Mechanisms Evidence and Treatment Options

Авторы

Ключевые слова:

Atopic Dermatitis, Skin Microbiome, Staphylococcus aureus, Microbial Dysbiosis, Microbiome-Targeted Therapy

Аннотация

In the modern world, one of the major medical challenges is atopic dermatitis (AD), a condition that has confounded the medical community with its complexity and many unexplored aspects. AD is known to be a chronic, relapsing inflam-matory skin disease characterized by intense pruritus, dysfunction of the epidermal barrier, and impaired immune regula-tion. In recent years, growing evidence has highlighted the pivotal role of the skin microbiome in the pathogenesis and progression of AD. Dysbiosis-particularly the dominance of Staphylococcus aureus and the loss of commensal microbial diversity-has been consistently associated with disease severity, increased frequency of exacerbations, and resistance to therapy. Recent clinical trials and longitudinal cohort studies have revealed a dynamic relationship between microbial composition and inflammatory processes in both children and adults with AD. Interventions targeting microbial bal-ance-including probiotics, prebiotic emollients, commensal transplants, and live biotherapeutic products-have demon-strated varying degrees of clinical efficacy, offering promising adjuncts to conventional anti-inflammatory therapies.This paper summarizes contemporary findings from high-quality studies, with a focus on the interplay between the skin mi-crobiota and the host immune response. It also highlights emerging microbiome-based therapeutic strategies and the in-tegration of microbial diagnostics into personalized treatment approaches for AD.

Библиографические ссылки

Langan, S. M., Irvine, A. D., & Weidinger, S. (2020). Atopic dermatitis. The Lancet, 396(10247), 345–360. https://doi.org/10.1016/S0140-6736(20)31286-1

Koh, L. F., Ong, R. Y., & Common, J. E. (2022). Skin microbiome of atopic dermatitis. Allergology International, 71(1), 31–39. https://doi.org/10.1016/j.alit.2021.11.001

Elias, P. M., & Schmuth, M. (2009). Abnormal skin barrier in the etiopathogenesis of atopic dermatitis. Current Opinion in Allergy and Clinical Immunology, 9(5), 437–446. https://doi.org/10.1097/ACI.0b013e32832e7d36

Facheris, P., Jeffery, J., Del Duca, E., et al. (2023). The translational revolution in atopic dermatitis: The paradigm shift from pathogenesis to treatment. Cellular & Molecular Immunology, 20, 448–474. https://doi.org/10.1038/s41423-023-00992-4

Brunner, P. M., Guttman-Yassky, E., & Leung, D. Y. M. (2017). The immunology of atopic dermatitis and its reversibility with broad-spectrum and targeted therapies. Journal of Allergy and Clinical Immunology, 139(4 Suppl), S65–S76. https://doi.org/10.1016/j.jaci.2017.01.011

Smythe, P., & Wilkinson, H. N. (2023). The skin microbiome: Current landscape and future opportunities. International Journal of Molecular Sciences, 24(4), 3950. https://doi.org/10.3390/ijms24043950

Scharschmidt, T. C., & Fischbach, M. A. (2013). What lives on our skin: Ecology, genomics and therapeutic opportunities of the skin microbiome. Drug Discovery Today: Disease Mechanisms, 10(3–4), e83–e89. https://doi.org/10.1016/j.ddmec.2012.12.003

SanMiguel, A., & Grice, E. A. (2015). Interactions between host factors and the skin microbiome. Cellular and Molecular Life Sciences, 72, 1499–1515. https://doi.org/10.1007/s00018-014-1812-z

Grice, E. A., Kong, H. H., Conlan, S., et al. (2009). Topographical and temporal diversity of the human skin microbiome. Science, 324(5931), 1190–1192. https://doi.org/10.1126/science.1171700

Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature Reviews Microbiology, 9(4), 244–253. https://doi.org/10.1038/nrmicro2537

Costello, E. K., Lauber, C. L., Hamady, M., et al. (2009). Bacterial community variation in human body habitats across space and time. Science, 326(5960), 1694–1697. https://doi.org/10.1126/science.1177486

Findley, K., Oh, J., Yang, J., et al. (2013). Topographic diversity of fungal and bacterial communities in human skin. Nature, 498(7454), 367–370. https://doi.org/10.1038/nature12171

Vijaya Chandra, S. H., Srinivas, R., Dawson, T. L., Jr., & Common, J. E. (2021). Cutaneous Malassezia: Commensal, pathogen, or protector? Frontiers in Cellular and Infection Microbiology, 10, 614446. https://doi.org/10.3389/fcimb.2020.614446

Sparber, F., De Gregorio, C., Steckholzer, S., et al. (2019). The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host & Microbe, 25(3), 389–403.e6. https://doi.org/10.1016/j.chom.2019.02.002

Zhang, E., Tanaka, T., Tajima, M., et al. (2011). Characterization of the skin fungal microbiota in patients with atopic dermatitis and in healthy subjects. Microbiology and Immunology, 55(9), 625–632. https://doi.org/10.1111/j.1348-0421.2011.00364.x

Rafat, Z., Hashemi, S. J., Ahamdikia, K., et al. (2017). Study of skin and nail Candida species as a normal flora based on age groups in healthy persons in Tehran-Iran. Journal de Mycologie Médicale, 27(4), 501–505. https://doi.org/10.1016/j.mycmed.2017.08.007

Wheeler, M. L., Limon, J. J., & Underhill, D. M. (2017). Immunity to commensal fungi: Detente and disease. Annual Review of Pathology: Mechanisms of Disease, 12, 359–385. https://doi.org/10.1146/annurev-pathol-052016-100342

Yang, J., Park, S., Kim, H. J., et al. (2023). The interkingdom interaction with Staphylococcus influences the antifungal susceptibility of the cutaneous fungus Malassezia. Journal of Microbiology and Biotechnology, 33(2), 180–187. https://doi.org/10.4014/jmb.2210.10039

Oh, J., Byrd, A. L., Park, M., et al. (2016). Temporal stability of the human skin microbiome. Cell, 165(4), 854–866. https://doi.org/10.1016/j.cell.2016.04.008

Ursu, R. G., Damian, C., Porumb-Andrese, E., et al. (2022). Merkel cell polyoma virus and cutaneous human papillomavirus types in skin cancers: Optimal detection assays, pathogenic mechanisms, and therapeutic vaccination. Pathogens, 11(4), 479. https://doi.org/10.3390/pathogens11040479

Joh, J., Jenson, A. B., Moore, G. D., et al. (2010). Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non-small cell lung cancer. Experimental and Molecular Pathology, 89(3), 222–226. https://doi.org/10.1016/j.yexmp.2010.08.001

Rather, P. A., & Hassan, I. (2014). Human Demodex mite: The versatile mite of dermatological importance. Indian Journal of Dermatology, 59(1), 60–66. https://doi.org/10.4103/0019-5154.123498

Paichitrojjana, A. (2022). Demodex: The worst enemies are the ones that used to be friends. Dermatology Reports, 14(3), 9339. https://doi.org/10.4081/dr.2022.9339

Tauber, M., Balica, S., Hsu, C. Y., et al. (2016). Staphylococcus aureus density on lesional and nonlesional skin is strongly associated with disease severity in atopic dermatitis. Journal of Allergy and Clinical Immunology, 137(4), 1272–1274. https://doi.org/10.1016/j.jaci.2015.07.052

Moriwaki, M., Iwamoto, K., Niitsu, Y., et al. (2019). Staphylococcus aureus from atopic dermatitis skin accumulates in the lysosomes of keratinocytes with induction of IL-1α secretion via TLR9. Allergy, 74(3), 560–571. https://doi.org/10.1111/all.13622

Vaher, H., Kingo, K., Kolberg, P., et al. (2023). Skin colonization with S. aureus can lead to increased NLRP1 inflammasome activation in patients with atopic dermatitis. Journal of Investigative Dermatology, 143(5), 1268–1278. https://doi.org/10.1016/j.jid.2023.01.013

Nakamura, Y., Oscherwitz, J., Cease, K. B., et al. (2013). Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature, 503(7476), 397–401. https://doi.org/10.1038/nature12655

Bitschar, K., Staudenmaier, L., Klink, L., et al. (2020). Staphylococcus aureus skin colonization is enhanced by the interaction of neutrophil extracellular traps with keratinocytes. Journal of Investigative Dermatology, 140(5), 1054–1065. https://doi.org/10.1016/j.jid.2019.10.017

Brauweiler, A. M., Goleva, E., & Leung, D. Y. M. (2014). Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). Journal of Investigative Dermatology, 134(8), 2114–2121. https://doi.org/10.1038/jid.2014.43

Laborel-Préneron, E., Bianchi, P., Boralevi, F., et al. (2015). Effects of the Staphylococcus aureus and Staphylococcus epidermidis secretomes isolated from the skin microbiota of atopic children on CD4+ T cell activation. PLoS One, 10(10), e0141067. https://doi.org/10.1371/journal.pone.0141067

Strbo, N., Pastar, I., Romero, L., et al. (2019). Single cell analyses reveal specific distribution of anti-bacterial molecule perforin-2 in human skin and its modulation by wounding and Staphylococcus aureus infection. Experimental Dermatology, 28(2), 225–232. https://doi.org/10.1111/exd.13870

Pastar, I., O’Neill, K., Padula, L., et al. (2020). Staphylococcus epidermidis boosts innate immune response by activation of gamma delta T cells and induction of perforin-2 in human skin. Frontiers in Immunology, 11, 550946. https://doi.org/10.3389/fimmu.2020.550946

Cau, L., Williams, M. R., Butcher, A. M., et al. (2021). Staphylococcus epidermidis protease EcpA can be a deleterious component of the skin microbiome in atopic dermatitis. Journal of Allergy and Clinical Immunology, 147(3), 955–966. https://doi.org/10.1016/j.jaci.2020.06.024

Williams, M. R., Bagood, M. D., Enroth, T. J., et al. (2023). Staphylococcus epidermidis activates keratinocyte cytokine expression and promotes skin inflammation through the production of phenol-soluble modulins. Cell Reports, 42(8), 113024. https://doi.org/10.1016/j.celrep.2023.113024

Nakatsuji, T., Chen, T. H., Narala, S., et al. (2017). Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Science Translational Medicine, 9(378), eaah4680. https://doi.org/10.1126/scitranslmed.aah4680

Sparber, F., De Gregorio, C., Steckholzer, S., et al. (2019). The skin commensal yeast Malassezia triggers a type 17 response that coordinates anti-fungal immunity and exacerbates skin inflammation. Cell Host & Microbe, 25(3), 389–403. https://doi.org/10.1016/j.chom.2019.02.002

Li, H., Goh, B. N., Teh, W. K., et al. (2018). Skin commensal Malassezia globosa secreted protease attenuates Staphylococcus aureus biofilm formation. Journal of Investigative Dermatology, 138(5), 1137–1145. https://doi.org/10.1016/j.jid.2017.11.034

Williams, M. R., Nakatsuji, T., Sanford, J. A., et al. (2017). Staphylococcus aureus induces increased serine protease activity in keratinocytes. Journal of Investigative Dermatology, 137(2), 377–384. https://doi.org/10.1016/j.jid.2016.10.008

Towell, A. M., Feuillie, C., Vitry, P., et al. (2021). Staphylococcus aureus binds to the N-terminal region of corneodesmosin to adhere to the stratum corneum in atopic dermatitis. Proceedings of the National Academy of Sciences of the United States of America, 118(15), e2014444118. https://doi.org/10.1073/pnas.2014444118

Uluçkan, Ö., Jiménez, M., Roediger, B., et al. (2019). Cutaneous immune cell–microbiota interactions are controlled by epidermal JunB/AP-1. Cell Reports, 29(4), 844–859. https://doi.org/10.1016/j.celrep.2019.09.042

Huang, C., Zhuo, F., Guo, Y., et al. (2025). Skin microbiota: Pathogenic roles and implications in atopic dermatitis. Frontiers in Cellular and Infection Microbiology, 14, 1518811. https://doi.org/10.3389/fcimb.2024.1518811

Jinnestål, C. L., Belfrage, E., Bäck, O., et al. (2014). Skin barrier impairment correlates with cutaneous Staphylococcus aureus colonization and sensitization to skin-associated microbial antigens in adult patients with atopic dermatitis. International Journal of Dermatology, 53(1), 27–33. https://doi.org/10.1111/ijd.12198

Shi, B., Bangayan, N. J., Curd, E., et al. (2016). The skin microbiome is different in pediatric versus adult atopic dermatitis. Journal of Allergy and Clinical Immunology, 138(4), 1233–1236. https://doi.org/10.1016/j.jaci.2016.04.053

George, S. M., Karanovic, S., Harrison, D. A., et al. (2019). Interventions to reduce Staphylococcus aureus in the management of eczema. Cochrane Database of Systematic Reviews, 2019(10), CD003871. https://doi.org/10.1002/14651858.CD003871.pub3

Lugović-Mihić, L., Meštrović-Štefekov, J., Potočnjak, I., et al. (2023). Atopic dermatitis: Disease features, therapeutic options, and a multidisciplinary approach. Life, 13(6), 1419. https://doi.org/10.3390/life13061419

Weiss, A., Delavenne, E., Matias, C., et al. (2022). Topical niclosamide (ATx201) reduces Staphylococcus aureus colonization and increases Shannon diversity of the skin microbiome in atopic dermatitis patients in a randomized, double-blind, placebo-controlled Phase 2 trial. Clinical and Translational Medicine, 12(5), e790. https://doi.org/10.1002/ctm2.790

Erwin, D. Z., & Chen, P. (2025). Mupirocin. In StatPearls [Internet]. StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK599499/

Leyden, J. J. (1990). Mupirocin: A new topical antibiotic. Journal of the American Academy of Dermatology, 22(5 Pt 1), 879–883. https://doi.org/10.1016/0190-9622(90)70117-z

Spellberg, B., Blaser, M., Guidos, R. J., et al. (2011). Combating antimicrobial resistance: Policy recommendations to save lives. Clinical Infectious Diseases, 52(Suppl 5), S397–S428. https://doi.org/10.1093/cid/cir153

Bowler, P. G., Duerden, B. I., & Armstrong, D. G. (2001). Wound microbiology and associated approaches to wound management. Clinical Microbiology Reviews, 14(2), 244–269. https://doi.org/10.1128/CMR.14.2.244-269.2001

Helmy, Y. A., Taha-Abdelaziz, K., Hawwas, H. A. E., et al. (2023). Antimicrobial resistance and recent alternatives to antibiotics for the control of bacterial pathogens with an emphasis on foodborne pathogens. Antibiotics, 12(2), 274. https://doi.org/10.3390/antibiotics12020274

Rusu, E., Enache, G., Cursaru, R., et al. (2019). Prebiotics and probiotics in atopic dermatitis. Experimental and Therapeutic Medicine, 18(2), 926–931. https://doi.org/10.3892/etm.2019.7678

Lee, Y. H., Verma, N. K., & Thanabalu, T. (2021). Prebiotics in atopic dermatitis prevention and management. Journal of Functional Foods, 78, 104352. https://doi.org/10.1016/j.jff.2021.104352

Martyniak, A., Medyńska-Przęczek, A., Wędrychowicz, A., et al. (2021). Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules, 11(12), 1903. https://doi.org/10.3390/biom11121903

Alam, M. J., Xie, L., Yap, Y. A., et al. (2022). Manipulating microbiota to treat atopic dermatitis: Functions and therapies. Pathogens, 11(6), 642. https://doi.org/10.3390/pathogens11060642

Litman, T. (2019). Personalized medicine—Concepts, technologies, and applications in inflammatory skin diseases. APMIS, 127(5), 386–424. https://doi.org/10.1111/apm.12934

Загрузки

Опубликован

2025-08-14

Как цитировать

Avazov, J., Ziyadullayev, S., & Ibragimov, K. (2025). Cutaneous Microbial Imbalance in Atopic Dermatitis Mechanisms Evidence and Treatment Options. Frontiers of Global Science, 3(2), 48–54. извлечено от https://www.scissmed.com/index.php/pub/article/view/76

Выпуск

Раздел

Articles

Похожие статьи

Вы также можете начать расширеннвй поиск похожих статей для этой статьи.